Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Data ; 11(1): 34, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38182605

RESUMEN

Here, we present BASD-CMIP6-PE, a high-resolution (1d, 10 km) climate dataset for Peru and Ecuador based on the bias-adjusted and statistically downscaled CMIP6 climate projections of 10 GCMs. This dataset includes both historical simulations (1850-2014) and future projections (2015-2100) for precipitation and minimum, mean, and maximum temperature under three Shared Socioeconomic Pathways (SSP1-2.6, SSP3-7.0, and SSP5-8.5). The BASD-CMIP6-PE climate data were generated using the trend-preserving Bias Adjustment and Statistical Downscaling (BASD) method. The BASD performance was evaluated using observational data and through hydrological modeling across Peruvian and Ecuadorian river basins in the historical period. Results demonstrated that BASD significantly reduced biases between CMIP6-GCM simulations and observational data, enhancing long-term statistical representations, including mean and extreme values, and seasonal patterns. Furthermore, the hydrological evaluation highlighted the appropriateness of adjusted GCM simulations for simulating streamflow, including mean, low, and high flows. These findings underscore the reliability of BASD-CMIP6-PE in assessing regional climate change impacts on agriculture, water resources, and hydrological extremes.

2.
Sci Rep ; 13(1): 6854, 2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37100878

RESUMEN

We investigate the contribution of anthropogenic forcing to the extreme temperature and precipitation events in Central Asia (CA) during the last 60 years. We bias-adjust and downscale two Inter-Sectoral Impact Model Intercomparison Project (ISIMIP) ensemble outputs, with natural (labelled as hist-nat, driven only by solar and volcanic forcing) and natural plus anthropogenic forcing (labelled as hist, driven by all-forcings), to [Formula: see text] spatial resolution. Each ensemble contains six models from ISIMIP, based on the Coupled Model Inter-comparison Project phase 6 (CMIP6). The presented downscaling methodology is necessary to create a reliable climate state for regional climate impact studies. Our analysis shows a higher risk of extreme heat events (factor 4 in signal-to-noise ratio) over large parts of CA due to anthropogenic influence. Furthermore, a higher likelihood of extreme precipitation over CA, especially over Kyrgyzstan and Tajikistan, can be attributed to anthropogenic forcing (over 100[Formula: see text] changes in intensity and 20[Formula: see text] in frequency). Given that these regions show a high risk of rainfall-triggered landslides and floods during historical times, we report that human-induced climate warming can contribute to extreme precipitation events over vulnerable areas of CA. Our high-resolution data set can be used in impact studies focusing on the attribution of extreme events in CA and is freely available to the scientific community.

4.
Sci Rep ; 11(1): 22893, 2021 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-34819545

RESUMEN

Recent studies have shown that hydro-climatic extremes have increased significantly in number and intensity in the last decades. In the Northern Hemisphere such events were often associated with long lasting persistent weather patterns. In 2018, hot and dry conditions prevailed for several months over Central Europe leading to record-breaking temperatures and severe harvest losses. The underlying circulation processes are still not fully understood and there is a need for improved methodologies to detect and quantify persistent weather conditions. Here, we propose a new method to detect, compare and quantify persistence through atmosphere similarity patterns by applying established image recognition methods to day to day atmospheric fields. We find that persistent weather patterns have increased in number and intensity over the last decades in Northern Hemisphere mid-latitude summer, link this to hydro-climatic risks and evaluate the extreme summers of 2010 (Russian heat wave) and of 2018 (European drought). We further evaluate the ability of climate models to reproduce long-term trend patterns of weather persistence and the result is a notable discrepancy to observed developments.

5.
Sci Total Environ ; 562: 666-677, 2016 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-27110979

RESUMEN

This study assesses future flood risk in the Niger River Basin (NRB), for the first time considering the simultaneous effects of both projected climate change and land use changes. For this purpose, an ecohydrological process-based model (SWIM) was set up and validated for past climate and land use dynamics of the entire NRB. Model runs for future flood risks were conducted with an ensemble of 18 climate models, 13 of them dynamically downscaled from the CORDEX Africa project and five statistically downscaled Earth System Models. Two climate and two land use change scenarios were used to cover a broad range of potential developments in the region. Two flood indicators (annual 90th percentile and the 20-year return flood) were used to assess the future flood risk for the Upper, Middle and Lower Niger as well as the Benue. The modeling results generally show increases of flood magnitudes when comparing a scenario period in the near future (2021-2050) with a base period (1976-2005). Land use effects are more uncertain, but trends and relative changes for the different catchments of the NRB seem robust. The dry areas of the Sahelian and Sudanian regions of the basin show a particularly high sensitivity to climatic and land use changes, with an alarming increase of flood magnitudes in parts. A scenario with continuing transformation of natural vegetation into agricultural land and urbanization intensifies the flood risk in all parts of the NRB, while a "regreening" scenario can reduce flood magnitudes to some extent. Yet, land use change effects were smaller when compared to the effects of climate change. In the face of an already existing adaptation deficit to catastrophic flooding in the region, the authors argue for a mix of adaptation and mitigation efforts in order to reduce the flood risk in the NRB.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...